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We present a new general framework for designing multiscale methods. Compared with
previous work such as Brandt’s systematic up-scaling, the heterogeneous multiscale
method (HMM) and the ‘‘equation-free” approach, this new framework has the distinct fea-
ture that it does not require reinitializing the microscale model at each macro time step or
each macro iteration step. In the new strategy, the macro- and micro-models evolve simul-
taneously using different time steps (and therefore different clocks), and they exchange
data at every step. The micro-model uses its own appropriate time step. The macro-model
runs at a slower pace than required by accuracy and stability considerations for the mac-
roscale dynamics, in order for the micro-model to relax. Examples are discussed and appli-
cation to modeling complex fluids is presented.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The main purpose of this paper is to present a new framework for designing multiscale, multi-physics methods. Com-
pared with other existing general strategies such as systematic up-scaling [1,2], the heterogeneous multiscale method [3–
5] and the ‘‘equation-free” approach [6], the new framework has the distinct advantage that it does not require reinitializing
the microscale model at each macro time step or each macro iteration step. Methods designed under this new framework are
therefore quite seamless and much easier to implement.

In many areas of science and engineering, we face the problem that we are interested in analyzing the macroscale behav-
ior of a given system, but we do not have an explicit and accurate macroscopic model for the macroscale quantities that we
are interested in. On the other hand, we do have at our disposal a microscopic model with satisfactory accuracy – the dif-
ficulty being that solving the full microscopic model is far too inefficient. Most well-known examples include:

(1) In molecular dynamics, we need an accurate force field which we often do not have. Instead, we have an electronic
structure model such as models from the density functional theory.

(2) When modeling the dynamics of real gases, we need the equation of state which we often do not have. Instead, we
have an accurate kinetic model.

(3) In continuum models of complex fluids, we need the constitutive relations which we often do not have. Instead, we
have an accurate atomistic model, such as a molecular dynamics model, for the system. The same situation exists
for solids.
. All rights reserved.
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Many different methods have been developed to deal with these situations. Most well-known among these methods are
the Car–Parrinello molecular dynamics [7], the quasi-continuum method for studying the deformation of solids [8,9] and the
kinetic scheme for studying gas dynamics [10]. All these methods share the following features:

(1) They allow us to model the macroscale quantities of interest, by coupling with a microscale model, not by using ad hoc
macroscale models.

(2) They make use of the scale separation in the system, either by modifying some small parameters in the problem (as is
done in the Car–Parrinello molecular dynamics), or by solving the microscopic model on small spatio-temporal
domains (as in the Knap–Ortiz version of the quasi-continuum method [9]).

The success of these methods and the success of more traditional multiscale methods such as the multi-grid method have
given impetus to finding general framework for multiscale methods. Most notable among these are the systematic up-scal-
ing approach of Brandt [2], the heterogeneous multiscale method [3–5] and the ‘‘equation-free” approach [6]. The hope is
that a general framework might lead to general designing principles for multiscale methods and guidelines for carrying
out error analysis, as was the case of finite difference and finite element methods for solving differential equations. To a large
extent, the heterogeneous multiscale method has indeed achieved these goals [4].

In Ref. [2], Achi Brandt reviewed a general strategy for extending the multi-grid method and renormalization group anal-
ysis to multi-physics problems. The new strategy, which is now called ‘‘systematic up-scaling”, allows the use of discrete
models such as Monte Carlo methods or molecular dynamics (besides traditional partial differential equation models) at
the finest level of the calculation, and it does not require explicit macroscale models to begin with. In fact, Brandt remarked
that one might be able to construct an effective macroscale model from the data accumulated during the computation. In
addition, one can exploit scale separation by restricting the size of the spatial–temporal domain over which the microscale
models are simulated: ‘‘few sweeps are enough, due to the fast CMC equilibration. This fast equilibration also implies that
the interpolation can be done just over a restricted sub-domain, serving as window: In the window interior fine-level equil-
ibration is reached.”

In the heterogeneous multiscale method (HMM), one begins with an assumption about the form of the macroscale model
(not the detailed expression), based on which one selects a macro-solver for the problem. Due to the fact that the
macro-model is not explicitly known, the microscale model is invoked during the computation to supply whatever data that
is missing but needed for the macro-solver. Scale separation is exploited by observing that in the data estimation step, the
computational domain for the microscopic model can be totally decoupled from the physical domain for the macroscale
solver. It only has to be large enough to guarantee the required accuracy for the data. For the same reason, there is no direct
communication between the different microscopic simulations carried out for estimating data at different spatial locations.
All communications are done through the macro-solver. This observation motivated the construction of the fiber bundle
structure for the multiscale problems handled by HMM [11]. This fiber bundle structure is also quite relevant to the seamless
approach discussed below.

In the ‘‘equation-free” approach, one tries to link together simulations of the microscopic models on small spatial–tem-
poral domains in order to ‘‘perform system level tasks” [6]. This is done through interpolation in space and extrapolation in
time of ensemble-averaged macroscale quantities obtained from the microscopic simulations.

In all three approaches, one basic underlying assumption is that the microscopic process is in equilibrium with the local
macroscopic state of the system. In other words, the local relaxation time for the microscopic process is much smaller than
the time scale for the macroscopic evolution of the system.

From a practical viewpoint, the most notable common feature of these strategies is that they all require going back and
forth between the macro- and micro-states of the system, even though the terminologies used are different (see Table 1 for a
comparison of the different terminologies). This can become rather difficult in practical implementations, particularly when
constructing micro-states from the macro-variables and when the micro-states are discrete and the macro-variables are con-
tinuous quantities.

The main motivation of the current paper is to present a strategy that bypasses this difficulty. In a nutshell, the basic idea
is as follows.

(1) Run the micro-solver using its own time step ds.
(2) Run the macro-solver using its own time step D0t.
(3) Exchange data between the micro- and macro-solvers at every step.
Table 1
Terminologies used in multi-grid, HMM, and the equation-free approach.

Method Macro to micro Micro to macro

Systematic up-scaling Interpolation Restriction (projection)
HMM Reconstruction Compression
Equation-free Lifting Restriction
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The macro time step D0t should be much smaller than what is required to accurately resolving the macroscale behavior of
the system. For example, if Dt is the time step size required for accurately resolving the macroscale behavior of the system,
we choose D0t ¼ Dt=M where M > se=ds; se being the relaxation time of the microscopic model. This is necessary in order to
guarantee that the microscopic process has sufficient time to relax.

Two important features of this procedure are:

(1) There is no need to reinitialize the microscopic solver.
(2) The micro- and macro-solvers use different clocks.

Intuitively, the basic idea is to force the microscale model to accommodate the changes in the macroscale environment at
a much faster pace. For example, assume that the characteristic macro time scale is 1 s and the micro time scale is
1 fs ¼ 10�15 s. In a brute force calculation, the micro-model will run 1015 steps before the environment changes. HMM makes
use of the separation of the time scales by running the micro-model until it is sufficiently relaxed, which requires far fewer
than 1015 steps, and then extracting the data in order to evolve the macro system over a macro time step of 1 s. The price one
has to pay is that one has to reinitialize the microscale solver at each macro time step. In other words, even though HMM
skips 1015 �M (M is the number of steps that HMM has to run in order for the microscopic model to relax) micro steps of
calculation, it still exchanges data between the macro- and micro-solvers after every 1015 micro time step interval. One can
do this differently and exchange data every M micro time steps. By doing so, we change the clock for the micro-model, but
we no longer need to reinitialize the micro-model every macro time step. Since the cost of the macro-solver is typically very
small compared with the cost of the micro-solver, we may as well run the macro-solver using a smaller time step (i.e. 1/M s)
and exchange data every time step. In this way the data exchanged are more smooth. It turns out that this has the added
advantage that it also reduces the statistical error (see the numerical results presented below).

At a mathematical level, aspects of these ideas can be found in the framework of fiber bundle dynamics, proposed in Ref.
[11]. At the level of algorithms, ideas of a similar origin were used in Car–Parrinello molecular dynamics [7]. Most directly
relevant to the present work are the works in [12] where similar ideas were used to study dynamical systems with disparate
time scales, in [13] where they are used to design methods to sample free energies in the context of molecular systems, and
in [14] where they are used to develop multiscale methods for studying the macroscale behavior of fluids made up of chain
molecules. This work can be considered as a direct generalization of the work in [14].

The present paper is organized as follows: In Section 2, we present the general framework and discuss three simple exam-
ples, an ODE (ordinary different equations) example, a SDE (stochastic differential equation) example, and an example of the
parabolic homogenization problem. In Section 3, we discuss errors in these methods and we focus on the simple ODE and
SDE discussed in Section 2. We also compare the new strategy with HMM. In Section 4, we present the application of the
new seamless algorithm to modeling the macroscopic behavior of complex fluids modeled by chain molecules. Complex flu-
ids were used as examples in Ref. [14], but there the discussion was restricted to shear flows. Here we consider general
incompressible flows. In Section 5, we briefly discuss type A problems, namely problems for which the microscopic models
are used to help resolving local singularities or defects. Concluding remarks are made in Section 6.

2. The seamless algorithm

2.1. Setup and the general framework

We will follow a top-down coupling strategy in the style of HMM [3,4]. Let us begin with a general formulation of mul-
tiscale problems. We will use U to denote the macro-state variables, and u to denote the micro-state variables in the prob-
lem. At the macroscopic level, we have an incomplete macroscale model:
@tU ¼ LðU; DÞ; ð1Þ
where D denotes the data needed for the macroscale model to be complete. For example, for complex fluids, U might be the
macroscopic velocity field and D might be the stress tensor. In addition, we also have a microscopic model:
@su ¼ Lðu; UÞ; Quð0Þ ¼ U0: ð2Þ
Here the macroscale variable U may enter the system as constraints, and Q is the compression operator that maps micro-
state variables to macro-states variables [3]. We have used different notations t and s to denote the time variable for
the macro- and micro-models, to emphasize the point that we do not have to think about them over the same physical
domain.

In general, there are two important time-scales that we need to consider. The first, denoted by tM , is the time scale for the
dynamics of the macro-variables. The second, denoted by se, is the relaxation time for the microscopic model. We will need
to distinguish two different cases. The first is when there is no time scale separation, i.e. se � tM . In this case, from the view-
point of numerical efficiency, there is not much room to play with as far as time scales are concerned. The second case is
when se � tM . This is the case we will focus on. In this case, we can play with the time variable s, as we will see later.
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The general philosophy of HMM is to couple the macro- and micro-models such that the macro-state provides the con-
straints for the micro-model and the micro-model provides the needed constitutive data D for the macro-model. HMM pro-
ceeds by selecting a macro-solver for (1), and then

(1) Solve (2) in the appropriate computational domain for the micro-model;
(2) Use the results to estimate D;
(3) Use the macro-solver to evolve U.

Each time the microscopic model is invoked, it has to be reinitialized. Thus, one can write down the HMM procedure for-
mally as:

(1) Given the current state of the macro-variable UðtÞ, reinitialize the micro-variable:
utð0Þ ¼ RUðtÞ: ð3Þ
(2) Evolve the micro-variable for M micro time steps:
utððmþ 1ÞdsÞ ¼ SdsðutðmdsÞ; UðtÞÞ; m ¼ 0; . . . ;M � 1; ð4Þ
(3) Estimate D:
DðtÞ ¼ DMðutð0Þ;utðdsÞ; . . . ;utðMdsÞÞ: ð5Þ
(4) Evolve the macro-variable for one macro time step using the macro-solver:
Uðt þ DtÞ ¼ SDtðUðtÞ; DðtÞÞ: ð6Þ
(5) Set the current state of the macro-variable to Uðt þ DtÞ and repeat.

Here R is some reconstruction operator that reinitializes the micro-model in a way that is consistent with the current
state of the macro-variables, S is the micro-solver, which also depends on UðtÞ through the constraints, as indicated. DM

is some data processing operator which in general involves time/ensemble averaging. This is sometimes referred to as the
data estimator. Finally S is the macro-solver.

The reason why the micro-variables must be reinitialized is that at the end of one HMM iteration, one is left with utðMdsÞ
satisfying QutðMdsÞ ¼ UðtÞ, but what is needed for the next iteration is utþDtð0Þ which should satisfy QutþDtð0Þ ¼
Uðt þ DtÞ – UðtÞ.

The parameter M is an important parameter in this algorithm. It has to be large enough such that the micro-state has
reached its quasi-equilibrium state. In practice, the requirement is that
se � Mds: ð7Þ
We can formulate a simpler algorithm that does not require reinitialization:

(1) Given the current state of the micro-variable uðsÞ and the macro-variable UðtÞ, evolve the micro-variable for one time
step
uðsþ dsÞ ¼ SdsðuðsÞ; UðtÞÞ: ð8Þ
(2) Estimate D:
D ¼ Dðuðsþ dsÞÞ: ð9Þ
(3) Evolve the macro-variable
Uðt þ D0tÞ ¼ SD0tðUðtÞ; DÞ: ð10Þ
(4) Set the current state of the micro- and macro-variables respectively to uðsþ dsÞ and Uðt þ D0tÞ and repeat.

In this algorithm, we alternate between the macro- and the micro-solvers, each running with its own time step (therefore
the micro- and macro-solvers use different clocks). At every step, the needed macroscale data is estimated from the results of
the micro-model (at that step) and is supplied to the macro-solver. The new values of the macro-state variables are then used
to constrain the micro-solver. In essence, the micro-solver is forced to adapt to the changes of the macroscale environment at
a much faster pace. An illustration of this procedure is shown in the lower panel Fig. 1.

Remarks: Some remarks are in order:

(1) To guarantee that the microscale model will have sufficient time to adapt to the changes of the macro-state, we have
to run the macroscale model on a slower pace than is required for accurately resolving the dynamics of macroscale
quantities. If Dt is the time step size suitable for resolving the macroscale dynamics (i.e. the one used in HMM), then



Fig. 1. Illustration of HMM (upper panel) and the seamless algorithm (lower panel).
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we should take D0t ¼ Dt=M where the value of M is similar to that in HMM and should be chosen according to (7) and
the accuracy requirement. The dependence of the accuracy of the algorithm on the parameter M will be discussed in
Section 3.

(2) The seamless algorithm is more costly than HMM, since we now evolve the macro-variables using much smaller time
steps. However, this increase of cost is quite small since in most cases, there are far fewer macro-variables than micro-
variables.

(3) Even though we do not use explicit time averaging to process the microscopic data in the new algorithm, the data is
implicitly averaged over time in this algorithm, and the statistical error is comparable to that in HMM at equal cost.
We will return to this issue in Section 3.

(4) One should note the difference between HMM, the seamless algorithm and the multiple time step methods [15] or
asynchronous integrators [16]. In the seamless algorithm, the macro- and micro-models use different clocks. In
HMM, the micro- and macro-models use the same clock, but the micro-model is only simulated over a small portion
of the time interval. In the multiple time step methods or the asynchronous integrators, different time steps are used
for the different terms in the model, but there is only one clock and all terms are propagated over the whole time-span.

From the consideration of time scales alone, the computational savings in the seamless algorithm come from the fact that
effectively the system is evolving on the time step D0t. In the case when the time scales are separated, D0t can be much larger
than ds. Therefore one can define the savings factor:
CS ¼
D0t
ds
¼ Dt

Mds
: ð11Þ
As an example, let us consider the case when the microscopic model is molecular dynamics, and the time step size is fem-
toseconds ðds ¼ 10�15 sÞ. If one wants to simulate one second of physical time, then one needs to compute for 1015 steps. On
the other hand, assume that the relaxation time is on the order of picoseconds ð10�12 sÞwhich is about 103 micro time steps,
then M ¼ 104 is a reasonable choice, and simulating one second of physical time using the seamless algorithm requires 104

steps. This is a factor of 1011 savings. The price to be paid is that we no longer obtain accurate information at the level of the
microscopic details – we can only hope to get accurate information for the macro-state variables.

2.2. Example: stiff ODEs

To get a first impression about how the new algorithm works, let us consider the trivial example of stiff ODEs:
dx
dt
¼ f ðx; yÞ

dy
dt
¼ �1

e
ðy�uðxÞÞ:

8>><
>>: ð12Þ
Here U ¼ x;u ¼ ðx; yÞ. In the style of Car–Parrinello molecular dynamics, one would change the small parameter e to a bigger
value e0:
dx
dt
¼ f ðx; yÞ

dy
dt
¼ � 1

e0
ðy�uðxÞÞ;

8>><
>>: ð13Þ
where the size of e0 is determined by the accuracy consideration. This modified equation is then solved using standard
methods.
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We can look at this differently. Instead of changing the value of e, we may change the clock for the micro-model, i.e. if we
use s ¼ et=e0 in the second equation in (13), then (13) can be written as:
dx
dt
¼ f ðx; yÞ;

dy
ds
¼ �1

e
ðy�uðxÞÞ:

8>><
>>: ð14Þ
If we discretize this equation using standard ODE solvers (e.g. the forward Euler) but with different time step sizes and de-
note by yn ¼ yðndsÞ and xn ¼ xðnD0tÞ, we obtain the following algorithm:
ynþ1 ¼ yn � ds
e
ðyn �uðxnÞÞ; ð15Þ

Dnþ1 ¼ ynþ1; ð16Þ
xnþ1 ¼ xn þ D0tf ðxn;Dnþ1Þ: ð17Þ
One can think of this as running the two solvers on different clocks with the same number of steps, and exchanging data
every step.

2.3. Example: SDEs with multiple time scales

Next, consider:
dx
dt
¼ f ðx; yÞ;

dy ¼ � 1
e ðy�uðxÞÞdt þ

ffiffi
1
e

q
dw;

8><
>: ð18Þ
where wðtÞ is a Wiener process. The averaging theorems suggest that the effective macroscale equation should be in the form
of an ODE:
dx
dt
¼ FðxÞ: ð19Þ
HMM with forward Euler as the macro-solver proceeds as follows:

(1) Initialize the micro-solver, e.g. yn;0 ¼ yn�1;M;
(2) Apply the micro-solver for M micro steps:
yn;mþ1 ¼ yn;m � dt
e
ðyn;m �uðxnÞÞ þ

ffiffiffiffiffi
dt
e

r
nn;m ð20Þ

for m ¼ 0;1; . . . ;M � 1. Here fnn;mg are independent normal random variables with mean 0 and variance 1;

(3) Estimate FðxÞ:
Fn ¼ 1
M

XM

m¼1

f ðxn; yn;mÞ: ð21Þ
(4) Apply the macro-solver:
xnþ1 ¼ xn þ DtFn: ð22Þ
Here xn ¼ xðnDtÞ.
In contrast, the seamless algorithm with forward Euler scheme is simply:
ynþ1 ¼ yn � ds
e
ðyn � /ðxnÞÞ þ

ffiffiffiffiffiffi
ds
e

r
nn; ð23Þ

xnþ1 ¼ xn þ D0tf ðxn; ynþ1Þ; ð24Þ
where fnng are independent normal random variables with mean 0 and variance 1, and now xn ¼ xðnD0tÞ.

2.4. The parabolic homogenization problem

Consider
@tue ¼ r � a x;
x
e
; t

� �
rue

� �
; ð25Þ
where aðx; y; tÞ is a smooth function and is periodic in y, say with period 1. The macroscale model is of the form
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@tU ¼ r � D; ð26Þ

D ¼ a x;
x
e
; t

� �
rue

D E
; ð27Þ
where h�i means taking spatial averages.
As in HMM, if we choose a finite volume method as the macro-solver, then D needs to be evaluated at the cell boundaries

[17]. We will make the assumption that the flux D depends on the local values of U andrU only. Consequently for the micro-
model, we will impose the boundary condition that ueðx; tÞ � Ax is periodic where A ¼ rU evaluated at the location of
interest.

Denote the micro-solver as:
unþ1 ¼ Sds;dxðun; AÞ: ð28Þ
In HMM, assume that we have the numerical approximation Un ¼ UðtnÞ (where tn ¼ nDt) at the n-th macro time step, we
obtain the numerical approximation at the next macro time step, Unþ1 ¼ Uððnþ 1ÞDtÞ through the following steps:

(1) For each j, let An
j ¼ Un

j � Un
j�1

� �
=Dx.

(2) Reinitialize the micro-solver, such that u0
j ðxÞ � An

j x is periodic for each j.
(3) Apply the micro-solver M steps:
un;mþ1
j ¼ Sds;dx un;m

j ; An
j

� �
with m ¼ 0;1; . . . ;M � 1.
(4) Compute
Dnþ1
j�1=2 ¼ a x;

x
e
; tn

� �
run;M

j

D E
: ð29Þ
(5) Evolve the macro-state variables using
Unþ1
j ¼ Un

j þ Dt
Dnþ1

jþ1=2 � Dnþ1
j�1=2

Dx
: ð30Þ
In contrast, if we use the proposed seamless strategy, then we have Un ¼ UðnD0tÞ. Given fUn
j g where Un

j denotes the
numerical approximation at time tn ¼ nD0t inside the jth cell, the seamless algorithm produces the updated values Unþ1

via the following steps:

(1) For each j, let An
j ¼ Un

j � Un
j�1

� �
=Dx.

(2) Evolve the micro-state variable for one micro time step:
unþ1
j ¼ Sds;dx un

j ; An
j

� �
: ð31Þ
(3) Compute
Dnþ1
j�1=2 ¼ a x;

x
e
; tn

� �
runþ1

j

D E
: ð32Þ
(4) Advance the macro-state for one reduced macro time step:
Unþ1
j ¼ Un

j þ D0t
Dnþ1

jþ1=2 � Dnþ1
j�1=2

Dx
: ð33Þ
3. Accuracy

Now let us discuss the accuracy of these methods. Instead of presenting a general framework for error analysis for the
seamless method, we will focus on the simple examples of ODEs and SDEs discussed earlier. For these simple examples,
the error for the seamless algorithm can be understood very simply using the following observation: Instead of thinking
of the micro- and macro-solvers with different clocks, we can think of them as being running on the same clock with the
same time step D0t, but with a different value of e that satisfies
ds
e
¼ D0t

e0
ð34Þ
or
e0 ¼ D0t
ds

e: ð35Þ
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For these simple examples, the seamless algorithm can be considered as standard algorithms applied to the modified prob-
lem with the modified parameter value. The error consists of two parts: The error due to boosting the parameter e and the
error due to numerical solution of the boosted model. For the stiff ODE (12), let us denote by xh the numerical solution for the
slow variable x and �x the solution to the limiting equation
dx
dt
¼ f ðx;uðxÞÞ: ð36Þ
Then we have
jxhðtÞ � �xðtÞj 6 C e0 þ D0t
e0

� �k

þ D0t‘
 !

¼ C
D0t
ds

eþ ds
e

� �k

þ D0t‘
 !

; ð37Þ
where the first term is due to the difference of the solution to the modified model and the solution to the limiting equation,
the second and third terms are the error of the micro- and macro-solvers respectively when applied to the modified equa-
tion, and k is the order of accuracy of the micro-solver and ‘ is the order of accuracy of the macro-solver. In terms of the
parameters entering the HMM algorithm, (37) can be written as
jxhðtÞ � �xðtÞj 6 C
Dt

Mds
eþ ds

e

� �k

þ Dt
M

� �‘
 !

: ð38Þ
This is to be compared with the error for the HMM algorithm which is given by [18,4,19]:
jxhðtÞ � �xðtÞj 6 C Dte�Mds=e þ ds
e

� �k

þ Dt‘
 !

ð39Þ
if we initialize the micro-solver such that yn;0 ¼ yn�1;M , and
jxhðtÞ � �xðtÞj 6 C e�Mds=e þ ds
e

� �k

þ Dt‘
 !

ð40Þ
if we initialize yn;0 arbitrarily. Here the first term is due to the error in the data estimation process, the second term is the
error in the micro-solver, and the last term is the error in the macro-solver. We see that under the usual circumstance and if
we use high order macro-solver the last term in each expressions gives a small contribution, and since we can then take
Mds=e � 1, HMM gives slightly better accuracy because the first term in (39) or (40) is smaller than the first term in
(38). However, this difference is quite insignificant since the other terms often dominate the error.

Let us now consider the SDE (18). We compare the numerical solution xh with the exact solution �x of the limiting
equation:
dx
dt
¼ FðxÞ; ð41Þ
where FðxÞ is given by [20]:
FðxÞ ¼ lim
e!0

Z
f ðx; yÞle

xðdyÞ; ð42Þ
where le
xðdyÞ is the invariant measure of the dynamics of the fast variable y with x fixed. Using ds=e ¼ D0t=e0, we see that the

seamless algorithm in (23) and (24) can be rewritten as:
ynþ1 ¼ yn � D0t
e0
ðyn �uðxnÞÞ þ

ffiffiffiffiffiffiffi
D0t
e0

r
nn; ð43Þ

xnþ1 ¼ xn þ D0tf ðxn; ynþ1Þ ð44Þ
which can be considered as a standard discretization of (18) with the parameter value of e boosted to e0:
dx
dt
¼ f ðx; yÞ;

dy ¼ � 1
e0 ðy�uðxÞÞdt þ

ffiffiffi
1
e0

q
dw:

8><
>: ð45Þ
Denote the solution of the above equation by xe0 . It was shown in Ref. [20] that
Ejxe0 ðtÞ � �xðtÞj 6 C
ffiffiffiffi
e0
p

; ð46Þ
where �x is the solution to the limiting Eq. (41). Therefore the error for the seamless algorithm is controlled by:
EjxhðtÞ � �xðtÞj 6 C
ffiffiffiffi
e0
p
þ D0t

e0

� �k

þ D0t‘
 !

¼ C

ffiffiffiffiffiffiffiffiffiffi
eDt
Mds

r
þ ds

e

� �k

þ Dt
M

� �‘
 !

; ð47Þ
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where the three terms represent the three contributions to the error: the first term is from (46), the second and third terms
are the error of the micro- and macro-solvers respectively when applied to the modified Eq. (45), k is the weak order of
accuracy of the micro-solver and l is the order of accuracy of the macro-solver. In comparison, the error for the HMM
algorithm is [20]:
EjxhðtÞ � �xðtÞj 6 C

ffiffiffiffiffiffiffiffiffiffi
eDt
Mds

r
þ ds

e

� �k

þ Dt‘
 !

: ð48Þ
We see that the errors are comparable for this case.
Due to the stochastic nature of the micro-model and the estimated data therefrom, the numerical solution of both algo-

rithms contains fluctuation or statistical error. This error is controlled by the first term in (47) and (48). In HMM, the statis-
tical error can be made smaller by using a larger value of M, which increases the averaging time in the data estimation
process and gives more accurate (i.e. less fluctuating) data. From the central limit theorem, the statistical error scales as
1=

ffiffiffiffiffiffiffiffiffiffi
Mds
p

as shown in (48). In the seamless algorithm, we see from (47) that the parameter M plays the same role as in
HMM and its value has the same effect on the accuracy of the numerical solution, though the data is not averaged explicitly
over time. This is another nice feature of the seamless algorithm. It is generic and is not limited to the specific SDE example
considered here. This will be demonstrated later in the numerical example in Section 4.3, where the micro-model is molec-
ular dynamics.

4. Application to polymer fluids

4.1. Basic ideas

In this section, we apply the seamless algorithm just described to model the macroscopic fluid dynamics of chain mole-
cules, under the assumption that the stress only depends on the rate of strain. The macroscopic model is that of
hydrodynamics:
qð@tuþr � ðu� uÞÞ � r � ss ¼ 0; x 2 X;

r � u ¼ 0;

�
ð49Þ
where q; u and ss are the fluid density, velocity and stress tensor, respectively (we use the subscript s in ss to distinguish
between the stress tensor ss and the time s of the micro-variables). These equations are simply the statement of mass and
momentum conservation. The data that needs to be supplied from the micro-model is the stress: D ¼ ss.

The microscopic model we will use is a molecular dynamics model for chain molecules. Assume that we have N mole-
cules, each molecule consists of k beads connected by springs. Each bead moves according to the Newton’s equation:
m
d2xj

ds2 ¼ �
@V
@xj

; ð50Þ
where j ¼ 1; . . . ; kN accounts for all the beads. The interaction potential consists of two parts:

(1) All beads interact via the Lennard–Jones (LJ) potential:
VLJðrÞ ¼ 4�
r
r

� �12
� r

r

� �6
� �

; ð51Þ

where r is the distance between the beads, � and r are some energy and length parameters, respectively.

(2) There is an additional interaction between neighboring beads in each molecule via a spring force, modeled by the FENE

(finitely extensible nonlinear elastic) potential:
VFENEðrÞ ¼
1
2 kr2

0 ln 1� r
r0

� �2
� �

if r < r0;

1 if r P r0:

8<
: ð52Þ
We use the following parameter values: The spring constant k ¼ 30 and the maximum extensibility r0 ¼ 1:5r.
From the molecular dynamics equation (50), one can derive a set of equations in the form of conservation laws. For that

purpose, we define mass and momentum densities as follows:
~qðx; sÞ ¼
X

j

mdðx� xjðsÞÞ; ð53Þ

~mðx; sÞ ¼
X

j

mv jðsÞdðx� xjðsÞÞ; ð54Þ
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Here v jðsÞ ¼ dxj=ds and dð�Þ is the Dirac delta function. One can prove as a consequence of the Newton’s equation (50) that
these fields satisfy the following:
@s ~qþr � ~m ¼ 0; ð55Þ
@s ~mþr � ~r ¼ 0; ð56Þ
where we defined the analog of the stress tensor:
~rðx; sÞ ¼
X

i

mv iðsÞ � v iðsÞdðx� xiðsÞÞ þ
1
2

X
i

X
j–i

ðxiðsÞ � xjðsÞÞ � f ijðsÞ
Z 1

0
dðx� ð1� kÞxjðsÞ � kxiðsÞÞdk: ð57Þ
Here f ijðsÞ is the force between the ith and the jth beads. (57) is the well-known Irving–Kirkwood formula [21].
These relations provide the needed link between the atomistic model and the continuum model: Upon (ensemble) aver-

aging, (55) and (56) becomes
@sh~qi þ r � h ~mi ¼ 0; ð58Þ
@sh ~mi þ r � h~ri ¼ 0: ð59Þ
Here h~ri is the total momentum flux. Stress is obtained if we subtract out the contribution due to momentum transport by
the average velocity. Specifically we split the particle velocity into two parts:
v i ¼ v 0i þ uðxi; sÞ; ð60Þ
where v 0i is the fluctuating part of the velocity and u is the mean velocity defined as:
uðx; sÞ ¼
X

j

v jðsÞdðx� xjðsÞÞ
* +

: ð61Þ
The average momentum flux ~r can then be written as:
h~ri ¼ h~qiu� u� h~ssi; ð62Þ
where ~q is given in (53) and ~ss is given by
~ss ¼ �
X

i

mv 0iðsÞ � v 0iðsÞdðx� xiðsÞÞ �
1
2

X
i

X
j–i

ðxiðsÞ � xjðsÞÞ � f ijðsÞ
Z 1

0
dðx� ð1� kÞxjðsÞ � kxiðsÞÞdk: ð63Þ
The ensemble average of above expression gives the stress tensor in the macro-model (49): ss ¼ h~ssi.
To use this in HMM and the seamless algorithm, we have to set up the molecular dynamics in such a way that the average

velocity field coincides with the macroscopic velocity field. We have assumed that the stress is only a function of the rate of
strain. Therefore, associated with each macro grid point where the stress is needed, we make the approximation that the
macroscopic velocity field is a linear function:
u ¼ u0 þ Ax; ð64Þ
where A is the rate of strain tensor at the given macroscopic grid point. It is easy to see that without loss of generality, we can
set u0 ¼ 0. We will set up a molecular dynamics system which is constrained in such a way that its average strain rate coin-
cides with A. Following Refs. [22,14], this constraint is imposed by using a periodic boundary conditions for particle positions
with respect to an evolving computational box. The vertices of the MD box move according to the dynamics:
dX
ds
¼ AXðsÞ: ð65Þ
When a particle goes outside the simulation box, it is inserted back from the opposite side of the box and at the same time,
its velocity is modified according to the imposed velocity gradient: �v i ¼ v i þ Að�xi � xiÞ.

From the results of the molecular dynamics, we then compute the local stress using (63). Since the MD is constrained so
that the average velocity field is u ¼ Ax, the fluctuating velocity of the particles in (63) is simply given by v 0i ¼ v i � Axi.

In practice, in the seamless algorithm, we replace the ensemble average in (62) by spatial average (or spatial–temporal
average, as is done in HMM):
ssðnD0tÞ ¼ 1
V

Z
x

~ssðx;ndsÞdx: ð66Þ
Here x is the (time-dependent) MD simulation box, V is the volume of x.
There is a basic difference between HMM and the new seamless algorithm on how the stress is obtained from MD. In

HMM, at each macro time step, a constrained MD is performed and the stress is then computed following the dynamics. Dur-
ing the MD, the matrix A in (65) is fixed at the value given by the macro-state at that macro time step. Usually, the above
formula is also averaged over time to give better results (with less statistical fluctuations). In the seamless algorithm, how-
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ever, (65) as well as the MD equations are solved simultaneously with the macro-model, and the data are exchanged every
time step. Thus the matrix A changes at every step. But this change is very slow, due to the fact that we use a macro time step
D0t which is smaller by a factor of M than the time step Dt used in HMM (see (6) and (10) and also the algorithms below).

4.2. Algorithms

In principle, we should work with a set of compressible flow type of equations at the macro-level, and an NVE ensemble at
the micro-level, as was described above. In practice, we will make two approximations: First we assume the flow is incom-
pressible at the macroscale, secondly we will work with the NVT ensemble in molecular dynamics, i.e. we will impose con-
stant temperature in MD [23]. We will also limit ourselves to the situation when the macroscale flow is a two-dimensional
flow. The molecular dynamics, however, is done in three dimensions, and simple periodic boundary condition is used in the
third direction. The constant temperature constraint is imposed by modifying the Newton’s equation for the component nor-
mal to the plane of the macroscale flow:
Fig. 2.

xiþ1
2
; zj

�
are com
m
d2yj

ds2 ¼ �
@V
@yj
� C _yj þ gj; ð67Þ
where V ¼ VLJ þ VFENE;C is a friction coefficient which is set to be 1 (in molecular units, i.e.
ffiffiffiffiffiffiffi
m�
p

=r) in the following numer-
ical examples, and gj is a random force with zero mean and variance 2mCkBT .

In HMM or the seamless method, we start with a macro-solver for the macro-model (49). Since the macroscale model is in
the form of the equations for incompressible flows, it is natural to use the projection method as the macro-solver [24]. The
projection method is a fractional step method. Let us denote the time step by Dt (it would be D0t in the seamless method),
and the numerical solution at the time tn ¼ nDt by un. In the projection method, we discretize the time derivative in the
momentum equation using the forward Euler scheme:
q
~unþ1 � un

Dt
þr � qun � un � sn

s

� 	
¼ 0: ð68Þ
For the moment, the pressure as well as the incompressibility condition are neglected. Next, the velocity field unþ1 at the new
time step tnþ1 ¼ ðnþ 1ÞDt is obtained by projecting ~unþ1 onto the divergence-free subspace:
q
unþ1 � ~unþ1

Dt
þrpnþ1 ¼ 0; ð69Þ
where pnþ1 is determined by the incompressibility condition:
r � unþ1 ¼ 0: ð70Þ
In terms of the pressure field, this becomes:
Dpnþ1 ¼ q
Dt
r � ~unþ1 ð71Þ
with a Neumann type of boundary condition.
The spatial derivatives in the above equations are discretized using standard central differences on a staggered grid as

shown in Fig. 2. As mentioned earlier, we will consider problems in which the macroscale flow fields are two-dimensional

flows. We denote the two components of the velocity field by u and w. In the staggered grid, u is defined at xi; zjþ1
2

� �
;w is
A staggered grid for the discretization of the spatial derivatives in the macro-model. Let u ¼ ðu;wÞ, then u is defined at xi; zjþ1
2

� �
;w is defined at�

, and p is defined at the xiþ1
2
; zjþ1

2

� �
. The diagonals of the momentum flux are computed at the cell centers indicated by circles, and the off-diagonals

puted at the grid points indicated by squares.
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defined at xiþ1
2
; zj

� �
, and p is defined at the center of each cell xiþ1

2
; zjþ1

2

� �
. The diagonal terms of the momentum flux (ss plus

the contribution of the convection) are defined at xiþ1
2
; zjþ1

2

� �
, and the off-diagonal terms are defined at ðxi; zjÞ. The operators

r and D in Eqs. (68), (69) and (71) are discretized by standard central difference and the five-point formula respectively.
For the purpose of comparison, we first briefly describe the algorithm of HMM for this problem. More details can be found

in Ref. [22]. In HMM, we first choose an initial value u0 for the macro-model and set n ¼ 0. We then follow the following steps:

(1) Compute the velocity gradient An ¼ run at each grid point where the stress is needed.
(2) Initialize an MD at each grid point.
(3) Solve each of the MD systems for M steps with a micro time step ds. Each MD is constrained by the local velocity gra-

dient An through the boundary condition.
(4) Compute the stress sn

s from the MD results. This is done after sufficient number of relaxation steps using the formula
(63). The stress is averaged over each MD box as in (66) and also over time to reduce the statistical fluctuation.

(5) Solve the macro-model for one macro step to obtain unþ1 ¼ uððnþ 1ÞDtÞ. This is done using the projection method
(68), (69), (71) with a macro time step Dt and the stress computed from MD;

(6) Set n :¼ nþ 1, and go to step 1.

The seamless algorithm, on the other hand, works as follows. We start with some initial velocity field u0 for the macro-
model. The macro-model is discretized on the staggered grid as shown in Fig. 2. At each grid point where the stress is needed,
we initialize an MD system in accordance with the local velocity gradient A0 ¼ ru0. Then we set n ¼ 0 and proceed as follows:

(1) Compute the velocity gradient An ¼ un at each grid point.
(2) Evolve each MD system and the equation for the MD box (65) for one micro time step ds. For the MD, periodic bound-

ary condition is used with respect to the evolving box.
(3) Compute the stress sn

s from the MD results. Similar to HMM, the stress is averaged over the MD box.
(4) Update the macro-model by one macro step D0t to obtain unþ1 ¼ uððnþ 1ÞD0tÞ. This is done using the scheme in (68),

(69), and (71) but with Dt replaced by a (smaller) time step D0t.
(5) Set n :¼ nþ 1, and go to step 1.

Compared with HMM, the main difference of the above seamless algorithm is that the micro-solver (here the MD) runs
continuously without reinitialization at each time step. The MD communicates with the macro-solver at each time step – the
constraint (i.e. the velocity gradient) imposed on MD changes at each MD step while the instantaneous stress computed at
each MD step is used to evolve the macroscale velocity field. In order for the MD to have sufficient time to relax and adapt to
the new environment specified by the constraint, the imposed velocity gradient has to change slowly when viewed in the
MD clock. This can be achieved by reducing the time step for the macro-model while keeping the MD time step fixed –
the smaller the macro time step, the slower the velocity gradient changes when viewed in the MD clock. A small time step
for the macro-model is also necessary in order to control the statistical error, as discussed earlier in Section 3 and demon-
strated below in the numerical example. The simplest version of this algorithm for shear flows was introduced in [14].

Note that in the computation the MD box could become very skewed (though this did not happen in our computation for
the driven cavity flow shown below). If this happens, the MD box has to be reset. The new box may be chosen based on the
idea of reproducible lattice [25–27]. The new MD box is still cubic but will align in certain direction which is determined by
the current local velocity gradient. This technique can also be used to choose the initial MD box.
4.3. Example: a driven cavity flow

As an example, we apply the above seamless algorithm to study the driven cavity flow. We consider two types of fluids:
The first is composed of simple particles interacting via the Lennard–Jones potential, the second is a polymer fluid which at
the microscale is modeled by the bead-spring model as described earlier in Section 4.1. Under normal conditions, the LJ fluid
is Newtonian (i.e. the stress and the rate of strain have a linear relation) and the macro flow behavior can be accurately de-
scribed by the Navier–Stokes (NS) equation. Therefore, we will regard the solution of the NS equation as the exact solution
and use it as a benchmark for the multiscale method.

In the following, we will express all quantities in terms of LJ units. For example, the unit of length is r; the unit of time is
r

ffiffiffiffiffiffiffiffiffi
m=�

p
; for temperature it is �=kB where kB is the Boltzmann constant, etc.

We consider the LJ fluid first. The fluid is confined in a square box which has a side length L ¼ 2000. The flow is driven by
the motion of the upper wall, which is sheared in the x-direction at the speed UðtÞ ¼minf3� 10�4t;3g. The computational
domain ½0; L	2 is covered by a uniform grid with 20� 20 grid points. In the seamless multiscale method, the macro time step
is taken as D0t ¼ 0:5. Each grid point is associated with one MD system which supplies the local stress. The MD is done in 3d
at the temperature 1.1 and the density 0.81. Each system contains 1:2� 104 particles. Initially these particles are put in a
cubic box which has the side length 24.56. The box evolves according to the local velocity gradient. The MD time step
is ds ¼ 0:005.
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Fig. 3. Flow lines of a Lennard–Jones fluid in the driven cavity flow at different times: t ¼ 7:5� 103; 1:0� 104; 1:25� 104; 2:25� 104 from top to bottom.
The left column is the result of the seamless multiscale method, and the right column is the numerical solution of the Navier–Stokes equation.
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In terms of real SI units, the size of our system is L ¼ 0:68 micrometer, the maximal driving velocity is Um ¼ 4:7� 102 m=s.
Obviously these values are a bit extreme and may not correspond to any realistic system. The only reason that we use these val-
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ues is to have a large signal-to-noise ratio. In realistic systems, the signal (i.e. the needed data) is usually vanishingly small com-
pared to the magnitude of the fluctuation. This imposes a severe difficulty when applying the multiscale method to these sys-
tems since it will require a long averaging time in HMM and a very small macro time step D0t (i.e. a large value of M) in the
seamless algorithm. More efficient methods for overcoming this difficulty, such as advanced variance reduction techniques, will
be left for future studies.

The numerical results are shown in Fig. 3. The first column of the figure shows the instantaneous flow lines obtained from
the seamless multiscale method at several times. As a comparison, in the second column we show the numerical results of
the NS equation at the same times. The parameters in the NS equation are measured from separate MD simulations of the LJ
fluid at the same density and temperature. In particular the density is q ¼ 0:81 and the measured viscosity is l ¼ 2:0. From
the figure we see that the result of the multiscale method agree very well with the solution of the NS equation.

To further assess the performance of the seamless method, we look at the velocity as a function of time at two locations.
The two figures in Fig. 4 show the x-component of the velocity at the location (1000,1600) and (1500,500) respectively. The
dashed curves are the solution of the seamless method. As a comparison, we also plot the solution of the NS equation
(smooth solid curves). From the figures we see that the major difference of the two results is the fluctuation in the solution
of the multiscale method. This is to be expected and is due to the statistical fluctuations in the stress tensor computed from
MD. It can be improved in various ways, e.g. by employing ensemble average (i.e. many MD replica associated with each grid
point), using larger MD system (consequently the instantaneous stress will be averaged over larger space, see (66)), or by
reducing the macro time step (see the next example). Apart from the fluctuations, the multiscale result follows closely
the solution of the NS equation.
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Fig. 4. The x-component of the velocity at the location (1000,1600) (upper panel) and (1500,500) (lower panel) as a function of time. The smooth solid
curves are the solution of the NS equation; the dashed curves are the solution of the seamless multiscale method.
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Fig. 5. Flow lines of a polymer fluid in the driven cavity flow at different times: t ¼ 7:5� 103; 1:0� 104; 1:25� 104; 2:0� 104 from top to bottom. The left
column is the result of the seamless multiscale method with the macro time step D0t ¼ 0:5; the right column is the result of the multiscale method with a
smaller macro time step D0t ¼ 0:25;
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Next we consider polymer fluids. The MD system at each grid point contains 1000 polymers; each polymer has 12 beads.
The density of the beads is 0.81; the MD time step is 0.002. All the other parameters are the same as in the previous example
for the LJ fluid. The numerical results are shown in Fig. 5. In this example, we used two different macro time steps: D0t ¼ 0:5
and D0t ¼ 0:25. The results are shown in the two columns respectively. These solutions are different from the Lennard–Jones
fluid. In particular, the vortex in the LJ fluid travels further downward to the bottom of the box before reaching the steady
state. A more qualitative comparison of the flows in a channel can be found in Ref. [14].

Comparing the two columns in Fig. 5, we see that their overall behavior agrees very well. We also see that the solution
obtained using the smaller macro time step (the right column) has less fluctuations. This agrees with the discussion at the
end of Section 3, namely, implicit averaging happens in the seamless algorithm and the stress tensor is implicitly averaged
over time.

Given a macro time T, the MD simulation in the seamless algorithm is carried out for a total period of Tds=D0t; therefore
reducing the macro time step D0t while keeping the micro time step ds fixed yields a longer MD simulation. This certainly
increases the computational cost, but we gain accuracy – the numerical result has less statistical error. This is similar to
HMM in which the statistical error can be reduced by increasing the value of the parameter M, the number of MD steps
in one macro time step. This example shows that in the seamless algorithm, the same effect can also be achieved by reducing
the macro time step. The difference is that in HMM one has to explicitly average the stress over time; but in the seamless
method, this is unnecessary and the stress is averaged over time implicitly.

5. Type A problems

So far we have only discussed the so-called type B problems [4], for which the microscopic models are used to supply the
constitutive relations, bypassing ad hoc modeling assumptions. We can also use the same kind of ideas for type A problems,
for which the microscopic models are used to help resolving local singularities, defects, or other kinds of small regions of
interest. In this case, we have some macroscopic models which are accurate enough over most of the computational domain,
except around these local singularities or defects. For these kinds of problems, there are also several general strategies.

(1) Domain decomposition methods: The microscopic models are used on part of the computational domain, and the
macroscopic models are used on the rest of the computational domain. These domains may or may not overlap. This
is the most popular strategy, and it is hard to say when it got started.

(2) Algorithm refinement methods [28]: These are extensions of the mesh refinement methods, but with the additional
option that more refined microscopic models can be used when needed. In particular, in this case, the whole compu-
tational domain is first covered by the macro-solver which is then refined locally.

(3) The heterogeneous multiscale methods [3,4]: The principle is the same as before, but now applied to a local region. In
this case, the computational domain for the microscopic model has to be identified with the physical domain (or sub-
domain) and it supplies the data needed in the macro-solver. If the time scale for the dynamics of the local region and
the relaxation time scale for the microscopic model are comparable, then there is little difference with the adaptive
model refinement approach. But if these time scales are separated, then within the HMM framework, one can natu-
rally take advantage of the time scale separation, as was done for type B problems.

The seamless strategy discussed here provides yet another alternative. Like HMM it allows us to take advantage of the
possible time scale separation.

Denote the whole physical domain of interest as X and on a sub-domain X0, we would like to use a more refined
microscopic model. Assume that se=tM � 1 where se and tM are respectively the relaxation time of the microscopic model
and the time scale for interesting dynamics in the local region. We then simply apply the strategy discussed in Section 2
on X0. The computational savings come from the time scale separation: The microscopic solver runs on a fictitious time scale,
even though it has a small time step, it has no obligation to cover the same amount of physical time as the macro-solver. If
there is no time scale separation, we can set M ¼ 1 and identify the fictitious time for the micro-solver with the physical
time.

6. Conclusions

We have presented a new framework for designing multiscale methods. Compared with existing general strategies such
as Brandt’s systematic up-scaling, HMM and the ‘‘equation-free” approach, this new framework has the distinct advantage
that it does not require reinitializing the microscale solver at every macro time step. At the same time, the accuracy and effi-
ciency are generally comparable to that of HMM. We note, however, that a general drawback of all the on-the-fly multiscale
methods is that it may be difficult to control the statistical error, to a point that systems of realistic sizes may be difficult to
study at this point. Solving this problem will require the development of better estimators using e.g. variance reduction tech-
niques. This will be the topic of future works.
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